Cell Type-Dependent Changes in CdSe/ZnS Quantum Dot Uptake and Toxic Endpoints

نویسندگان

  • Bella B. Manshian
  • Stefaan J. Soenen
  • Abdullah Al-Ali
  • Andy Brown
  • Nicole Hondow
  • John Wills
  • Gareth J. S. Jenkins
  • Shareen H. Doak
چکیده

Toxicity of nanoparticles (NPs) is often correlated with the physicochemical characteristics of the materials. However, some discrepancies are noted in in-vitro studies on quantum dots (QDs) with similar physicochemical properties. This is partly related to variations in cell type. In this study, we show that epithelial (BEAS-2B), fibroblast (HFF-1), and lymphoblastoid (TK6) cells show different biological responses following exposure to QDs. These cells represented the 3 main portals of NP exposure: bronchial, skin, and circulatory. The uptake and toxicity of negatively and positively charged CdSe:ZnS QDs of the same core size but with different surface chemistries (carboxyl or amine polymer coatings) were investigated in full and reduced serum containing media following 1 and 3 cell cycles. Following thorough physicochemical characterization, cellular uptake, cytotoxicity, and gross chromosomal damage were measured. Cellular damage mechanisms in the form of reactive oxygen species and the expression of inflammatory cytokines IL-8 and TNF-α were assessed. QDs uptake and toxicity significantly varied in the different cell lines. BEAS-2B cells demonstrated the highest level of QDs uptake yet displayed a strong resilience with minimal genotoxicity following exposure to these NPs. In contrast, HFF-1 and TK6 cells were more susceptible to toxicity and genotoxicity, respectively, as a result of exposure to QDs. Thus, this study demonstrates that in addition to nanomaterial physicochemical characterization, a clear understanding of cell type-dependent variation in uptake coupled to the inherently different capacities of the cell types to cope with exposure to these exogenous materials are all required to predict genotoxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power and Wavelength Dependence of Photoenhancement in (CdSe)ZnS-Dopamine in Aqueous Solution and Live Cells

(CdSe)ZnS-Dopamine. Photoluminescence. Photoenhancement. Living Cell CdSe(ZnS) quantum dots conjugated to the electron donor dopamine show enhancement of photoluminescence over a time course of seconds to minutes when exposed to ultraviolet or blue irradiation. This phenomenon is observed when the dots are in aqueous solution as well as after endocytosis by living cells. The rate of enhancement...

متن کامل

Onion-like (CdSe)ZnS/CdSe/ZnS quantum-dot-quantum-well heteronanocrystals for investigation of multi-color emission.

We investigate multi-color spontaneous emission from quantum-dot- quantum-well heteronanocrystals made of onion-like (CdSe)ZnS/CdSe/ZnS (core)shell/shell/shell structures, with our theoretical results explaining experimental measurements for the first time. In such multi-layered heteronanocrystals, we discover that the carrier localization is tuned from type-1-like to type-2-like localization b...

متن کامل

P-156: A Study about Toxicity of CdSe Quantum Dots on Male Sexual System of Mice and Controlling This Toxicity by ZnS Coverage in Immature Mice

Background: Quantum dots are commonly composed of cadmium contained semiconductors. Cadmium is potentially hazardous but toxicity of such quantum dots is not yet systematically investigated. On the other hand, in vitro studies have shown almost complete control of CdSe induced cytotoxicity by ZnS coverage. Toxicity of CdSe quantum dots and controlling this toxicity by ZnS coverage in immature m...

متن کامل

A comparative study about toxicity of CdSe quantum dots on reproductive system development of mice and controlling this toxicity by ZnS coverage

Objective(s):  Medicinal benefits of quantum dots have been proved in recent years but there is little known about their toxicity especially in vivo toxicity. In order to use quantum dots in medical applications, studies ontheir in vivo toxicity is important.  Materials and Methods:CdSe:ZnS quantum dots were injected in 10, 20, and 40 mg/kg doses to male mice10 days later, mice were sacrificed ...

متن کامل

Core size dependent hole transfer from a photoexcited CdSe/ZnS quantum dot to a conductive polymer.

Photoinduced hole transfer from a CdSe/ZnS quantum dot to a conjugated polymer is tuned by varying the quantum dot core size. Hole transfer affects the photoluminescence blinking of the quantum dot, increasing the duration of the on-states and decreasing that of the off-states.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2015